
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 115

Comprehensive Adaptive Partition Testing Using

Design Models for Software Quality Assurance

Ms. Ranjana Dalwani
1
, Prof. Makrand Samvatsar

2

M. Tech (SS), PCST, Indore1

Department of CES, PCST, Indore2

Abstract: Software execution is serving the needs of human effort reduction through automatic execution of process. It

also reduces the dependencies of effort and serves correctness towards working. Sometimes the software execution

shows changed behavior towards its actual operations which causes business loss, commercial downfall, information

loss etc. Thus the deployments always go through the rigorous testing of applications for the various systems. Testing is

very important phase of software development lifecycle which includes verification and validation of parameters used

for evaluating the software. It aims towards creation of defect free codes with better quality and reliability. Defect

identification and prediction along with requires recalling of product from customer end. It guides the developments to

be driven continuously in presence of testing methodologies. We have gone through the rigorous study of various

research articles which covers the possibilities of applying testing through different processes like partition testing and

model based testing. After analyzing the problem associated with early generation of test cases and the partitioning
logics we have suggested some improvements using comprehensive methods towards test process improvements and

quality primitives. Analytical evaluations are showing the benefits of work and its probable improvements over other

traditional approaches.

Index Term: Software Testing, Automated Testing, Partition Testing, Model Based Testing, Comprehensive Testing,

Quality Assurance.

1.0 INTRODUCTION

Testing aims towards identification of faults for getting the

improved quality and reliability to develop software’s.
Some of factors evaluating the software qualities are

usability, maintainability, reliability, reusability, testability

and the correctness. Some of the well defined goals of

testing are given as:

 The test process should be capable of suggesting the

changes required along with their operational

evaluations which adds the values to the codes.

 The testing process should be capable of designing the

well suitable test scenarios systematically to uncover

the different classes of the errors with minimum time

and efforts.

 It must satisfy the performance requirements as

specified in the defined documents.

 The testing must covers all the aspects of quality from

the collected data during the software operations and

its development stages.

Software testing is one of the key processes used to

develop the fault free codes in near optimal time and cost.

It also works towards getting the things according to the

developer with quantified accuracy and higher detection

rates [1]. Traditionally the testing is applied manually but

not the automated tools are outperforming this way with

effective solutions. But still there are some questions

which remain to be answered for best solution. Normally

the tester applies the test criteria’s for analyzing the code

and its subsets of input with a smaller range of classes.

Testing aims towards finding the maximum defect as
possible. Testing can be further divided into two major

areas: Manual and Automatic Testing [2].

 Manual Testing: It uses manual process for evaluating

the software codes without support of any additional tools

or script. Here the tester behaves as client or user and

operates the complete system manually to identify the

unexpected bugs. Manual testing is applied in different

stages like unit testing, system testing and acceptance

testing. Testers use test plans, test cases, or test scenarios

to test software to ensure the completeness of testing.
Manual testing also includes exploratory testing, as testers

explore the software to identify errors in it.

 Automation Testing: It is a self conductive process of

applying the test scripts towards verification of operational

structure of software. It does the automation of traditional

manual process quickly and repeatedly. It includes

regression and automation testing applied on various
factors like performance, load and stress.

It improves the test coverage, accuracy, and saves time

and money in association to manual testing process.

These smaller set of inputs are termed as test criteria’s and

the combination of these cases are based on different

conditions and the program codes known as test suites. An

aim is towards feeling confident about the test cases and

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 116

assuring that all the defects are removed. The testing

technique uses some of the information about the

programs or its structure for guiding the generation of test

cases and suites. This information might be related to flow

of data, functional behavior, common hitting errors or
their respective combinations.

2.0 BACKGROUND

Software development faces the issues regarding the size

and handling complexity while working with modular

designs. Massive interaction is required for accessing the

strength of all the branches of software’s. It uses

quantification approaches for further improving the

reliability of the system. This process is termed as

software testing identifies the bugs affecting the normal
operations of the software executions. Mainly the testing

deals with resource utilization and the code bug traversing

by analyzing the complete SDLC. The testing approaches

can be categorized according to their behavior and bug

detection process. Mainly the division is made as black

box and white box testing. In black box testing the internal

structure is not known and the test cases are applied on

operational system [3]. The white box testing works on the

internal structure and flow of the code. Its goal is to

identify the problems associated with the logic of the code

though control graphs. Its input space is very large and it

is very complicated to identify the bug that leads to
failures. It can be made feasible by effective uses of both

black box and white box testing. This work specifically

focuses on adaptive partition testing based on design

models like UML for improved test cases generation and

evaluations.

Understanding Automated Testing and Their Types
Software testing is the costlier process which requires high

cost in comparison with development. The process is

complex and tedious which can be improved by an

automated test generation system. Initially the input data is
reproduced to the system for generating the programs test

scenarios. The primary problem associated with testing the

big software’s is their features and code length which

requires massive efforts and resources to be consumed

during the test process. A standout amongst the most

imperative components in a testing environment is an

automatic test data generator, a system that automatically

produces test data for a given program. For better

coverage results additional component can be added to the

system with defined software model. Testing can also be

applied in early stages of development in integration with

the development and design models. For this UML is the
best way to extract the requirements of test cases. The

logic used from model creates a specific impact on test

case generation process and defined the rules for filtration

or reduction of test cases which covers complete code. The

criteria can be divided into two main heads: control flow

and data flow. They characterize the effort and the nature

of the results created automatically by an MBT approach

[4]. Model based testing (MBT) refers to the type of

process that focuses on deriving a test model using

different types of formal ones, then converting this test

model into a concrete set of test cases [5]. Models are the

intermediate artifacts between requirement specification

and final code. Models preserve the essential information
from the requirement, and are the basis for

implementation. During the time a few endeavors in

automatic test data generations have been made. The

thought of path testing is to produce a rundown of test sets

that capture all conceivable paths of component parameter

values from every parameter. We concentrate here on

widely accepted practices based on the use of the Unified

Modeling Language (UML) to support an object-oriented

development process [6]. The main reason for the

popularity of OOAD is that it holds the following

promises:

 Code and design reuse

 Increased productivity

 Ease of testing and maintenance

 Better code and design understandability

Partition testing is another approach which covers the

other aspect of this research. This testing divides the input

domain into sub domains according to the separation

condition known as partition logic of test cases. The test
case selection is applied from sub domains with

equivalence partitioning properties used for detecting the

bugs. Some knowledge of test criteria can be used for

modeling the test cases. Here the partition testing used

random partition logic according to different prediction

conditions. It uses pseudorandom number for selecting the

condition of partition testing. Both partition and random

based testing improves the performance and accuracy of

the error detection. But sometimes the partition testing is

serving in better way with higher failure rate and

probability of detection.
Some testing methodology considers the feedback of the

results such as adaptive testing. It provides the effective

test selection criterion with reduced test cases. Some of the

logical evaluation of all the above testing is found as:

 Partition testing performs well with equal size

partitions

 Random testing gives better results in random test

generation with higher coverage

 Adaptive testing serves better then both with high
computational complexity.

Partition testing with proportional allocation is shown to

perform at least as well as random testing in terms of all of

these criteria. Some empirical answer of exact comparison
of these testing methodologies is not yet present. Also, if

all the three mechanisms are used simultaneously then

their working operation and behavior is not controlled as

suggested many times.

Benefits of Testing

1. Increasing accountability and Control

2. Cost reduction

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 117

3. Time reduction

4. Defect reduction

5. Increasing productivity of the Software developers

Test case generation from design specifications has the

added advantage of allowing test cases to be available

early in the software development cycle, thereby making

test planning more effective.

3.0 PURPOSE OF STUDY

It is broadly acknowledged that the expense of testing,

investigating, and check exercises can without much of a

stretch reach from 50 to 75 percent of the aggregate
advancement cost in a common business improvement.

Among the different programming testing strategies,

irregular testing is the most crucial. It chooses test cases

arbitrarily, thus maintaining a strategic distance from the

overhead of project or particular based parceling of the

information area. Irregular testing has frequently been

utilized to test certifiable applications. In irregular testing,

every experiment is chosen autonomously. To make the

recognition of the main disappointment faster (that is, to

diminish the quantity of experiments expected to

recognize the principal disappointment), Malaiya

presented a hostile to irregular testing system, where the
primary experiment is chosen arbitrarily, and each ensuing

experiment is chosen by picking the one whose aggregate

separation to all the beforehand executed experiments is

most extreme. In hostile to arbitrary testing, the aggregate

number of experiments must be chosen in any case. The

haphazardness of this technique is likewise exceptionally

restricted in light of the fact that just the principal

experiment is chosen arbitrarily; the grouping of all the

ensuing experiments is deterministic.

The focus will be on determining which combination of

UML diagrams, and their associated constraints, may be
used to automatically, or semi-automatically, generate test

cases for adaptive partitioning testing. Prototype tools will

be developed in future to demonstrate the techniques and

strategies derived from the proposed investigation.

In summary, the study aims to:

(i) Determine what information is necessary to test the

integration of components in the process of system

composition;

(ii) Given item 1, investigate which individual or

combination of UML diagram types, offer sufficient

information to generate test cases; The results of this
aim, will affect aspects of activities 1 to 5 in the figure

(iii) Develop a strategy that reports on the amount of

testable information contained in a model.

(iv) Develop a adaptive partition testing strategy

which takes model information for its testing process;

(v) Evaluate our overall strategy and techniques.

4.0 RELATED STUDY

During the last few years software testing had grown

tremendously with their techniques. Lots of new and

overwhelming methodologies are developed which

improves the testing performance and decreases their

costs. Among them, some approaches shows their strong

presence in the respective areas and are related to their

work are taken here as literature. These are:
In the paper [7], a dynamic partitioning strategy is

presented for selecting the test cases through some online

feedback mechanism. Here the approach is focuses on

online medium for generating the test sequences and starts

with selecting criteria of online partition. Also the testing

is not based on the codes or internal structure of the

programs instead it uses only some metadata information

and passing and failing condition of previously executed

test cases. It does not requires any program code thus can

be used anywhere with direct software bundles. The paper

also evaluated the cost effectiveness of the dynamic
partitioning approach and presents the comparison with

some traditional testing. For evaluating some basic

programs are used and the results shows the minimum

number of test cases requires for detecting the complete

faults.

Although, solving all problems related to testing oracle is

not feasible each time because of their high complexity. In

the paper [8], some of the evaluation is perform on random

testing method of black box testing. Here the random test

cases are generated for identifying the total bugs from test

oracles. It also enables the coverage, if it is high the

probability of error detection is more and if the lesser
coverage is achieved then the test cases quantity is

increased. The paper deals with complete analyzing the

random testing through a mathematical model which

includes identification of effectiveness of random testing,

comparison of random strategies, scalability measurement

predictability of two runs and threats to validity.

In the paper [9], some more classification is provided on

the adaptive random testing (ART). Here the ART is

completely studied for demonstrating the behavior of

technique with higher detection rates of faults in

comparing with normal random testing. The paper also
suggests couple of new ART algorithms fir further

increasing the effectiveness. The suggested algorithm

provides similar working but the overhead associated with

the testing gets reduced. Here the overall test is subdivided

into several domains and test is selected from the largest

partition. As the partition process is operates on the basis

of a randomly preferred test case, we call this process

ART by random partitioning. It ensures that test cases

maintain to be widely broadened by only selecting new

cases from partitions which enclose no preceding test case.

After studying the cores of random testing some of the

authors had tries their work with anti random testing. This
anti random testing improves the fault detection capability

of existing random test by selecting the test which is

different from the previous test. The test cases generated

by anti random test are more evenly distributes in input

partition than the random test. It basically applies form

specific numerical input ranges because of their

measurable property. Apart from all the above benefits

some more modification is provided in antirandom testing

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 118

in [10]. The proposed techniques basically free the

dependency of only numerical inputs of antirandom

testing. The suggested technique is more fault detection

rates than any of the random testing variants and is tested

on various applications. Numbers of test cases are
functional and test for detection of faults inserted by using

transformation testing.

The paper [11] covers some aspect of partition testing

logics and overcome its existing problem. The work

detected that if the sub-domains of the testing inputs for

the partition is not homogeneous than their performance

are not as desired and their success also not contribute so

much confidence. Though the code coverage parameters in

testing are taken for granted as best practice always. The

author’s main target is to develop strategies for the

automatic progression of a test suite that does inspire
assurance. The work suggested is a combination of test

suite augmentation and reduction which assures changes

handling and repetition of testing logic. The paper

identifies the semantic difference between the overlapping

transform partitions with comparable behaviors of

programs. The generated test cases are witnesses of the

behavioral difference of both programs. Semantic change

is defined formally based on the notion of change

partitions overlapping for original and changed program.

The paper [12] focuses towards further improving the

performance and error detection probability of adaptive

random testing. It mainly increases the fault revealing
ability of random testing by introducing the ART based on

two point partitioning. According to the new algorithm of

ART-TPP the given are of testing inputs are divided into

two or more section based on midpoint theory rather than

direct division of\r equal division. Here the first point of

division initialization is randomly generated. The selection

of second point is through candidate set according to the

maximum criteria distance. The experimental evaluation is

also given with some existing ART algorithms: ART-RP

and ART-BP. The partition can be iteratively performed

until the potential faults are found or the size of test data
set reaches the pre-set limit. Analytical evaluation proves

the effectiveness of the suggested approach.

The paper [13] focuses on one of the major difficult with

testing which is its automated generation. This automatic

generation is performed by prior making some of the

generation criterion. It reduces the efforts and cost of the

testing makes the process truly automated. The paper

focuses on generation of test cases from the use of genetic

algorithms. The results are compared thoroughly with the

random testing. Here the designed algorithms make the

use of population and equivalence conditions. If the

selection of equivalence class is correct then the potential
testing complexities is gets reduced. Here the suggested

genetic based equivalence class partitioning detect the best

selection of fitness function and overcomes the test

generation complexity issues. At the primary level of work

of author the approach is serving all the need of testing.

The paper [14] uses artificial bee colony (ABC) for

independent path and test optimization and directs the

automatic test case generation process. The suggested

artificial technique merges the benefits of local search and

global search using scout bees and onlooker bees. The

behavior is suggested bees is very fast and provides

optimal results with independent paths. Each generated

test cases uses a fitness function with defined objectives
satisfying the necessary conditions. The paper also

presents an approach for the automated generation of

feasible independent test path based on the priority of all

edge coverage criteria. Finally, this paper compares the

efficiency of ABC based approach with various

approaches.

This paper presents a novel approach to generate the

automated test paths [15]. Due to the delay in the

development of software, testing has to be done in a short

time. This led to automation of testing because its

efficiency and also requires less manpower. In this
proposed approach, by using one of the most standard

Unified Modeling Language (UML) Activity Diagram,

construct the Activity Dependency table (ADT), then

generate the Test paths. Then the test paths are prioritized

by using the Tabular search algorithm. The prioritized test

path can be used in system testing, regressing testing and

integration testing. Then also from the Cyclomatic

diagram to check the efficiency of the test scenario.

The paper [16] shows that the genetic algorithms can be

used to automatically generate test cases for path testing.

Using a triangle classification program as an example,

experiment results show that Genetic Algorithm based test
data can more effectively and efficiently than the existing

method does. The nature of experiments produces by

genetic calculations is higher than the nature of

experiments delivered by random way. It is due to the

algorithm can direct the generation of test cases to the

desirable range fast. This paper demonstrates that genetic

calculations are valuable in decreasing the time required

for long testing definitively by producing test cases for

way testing. The generated test cases are having better

quality in comparison with random methods. This paper

shows that genetic algorithms are useful in reducing the
time required for lengthy testing meaningfully by

generating test cases for path testing.

The paper [17] gives a diverse approach for model based

testing. The mechanism It selects a subset of the generated

test suite in such a way that it can be realistically executed

and analyzed within the time and resource constraints,

while preserving the fault revealing power of the original

test suite to a maximum extent. In this article, to address

this problem, we introduce a family of similarity-based

test case selection (STCS) techniques for test suites

generated from state machines. The paper also proposes a

method to identify optimal tradeoffs between the number
of test cases to run and fault detection.

In the paper [18] an overview of Model based slicing,

including the various general approaches and techniques

used to compute slices. To understand and test a large

software product is a very challenging task. One way to

use this is program slicing technique that decomposes the

large programs into smaller ones and another is a model

based slicing that decomposes the large software

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 119

architecture model into smaller models at the early stage

of SDLC (Software Development Life Cycle). From the

given literature this has been listed out that for model

based slicing techniques, there is the use of dependency

relation, control and data flow, UML/OCL constraints,
model language are present in literature with great

emphasis on dependency relation.

An orchestrated survey of the most prominent techniques

for automatic generation of software test cases, reviewed

in self-standing sections proposed in [19]. The techniques

presented include: (a) structural testing using symbolic

execution, (b) model-based testing, (c) combinatorial

testing, (d) random testing and its variety of adaptive

random testing, and (e) search-based testing. Each section

is contributed by world renowned active researchers on the

technique, and briefly covers the basic ideas underlying
the technique, the current state of art, a discussion of the

open research problems, and a perspective of the future

development in the approach. As a whole, the paper aims

at giving an introduction, up-to-date and (relatively) short

overview of research in automatic test case generation,

while ensuring comprehensiveness and authoritativeness.

Review Summary
The advantage of random testing is normally that it is

more stressing to the program under test than hand

selected test data, but on the other hand random inputs

may never exercise both branches of a predicate which
tests for equality. Even in the case that random testing is

cheaper than partition testing, the slight advantage of

random testing could be compensated for by using more

random tests and there is no assurance that full coverage

can be obtained, e.g. if equality between variables are

required. And secondly it may mean examining the output

from thousands of tests, the model based testing proves to

be an effective approach to test the complete code with

minimum test suites or cases. Thus with the most of the

surveyed paper it is found that there is a possibility of

integrating the model logics with adaptive partition
testing.

5.0 PROBLEM DEFINITION

Software evaluation and review based testing detect and

unusual behavior with the code developed unintentionally.

It affects the procedural rules of the applications.

Sometimes the developed applications show deflected

behavior in their functions due to the presence of bugs. It

can be uncovered by identifying the modules from which

system is affected. Under the testing process the test case

generation requires generation of combination which
guides the testing methodology. During the process of

testing we feels to recreate the test case by applying the

initial results of some test but it was not possible with

existing mechanism. Thus feedback or adaptive behavior

is required for better results. All the process which

predicts or forecast requires generation of test cases and

suites for verifying their input ranges. It comes under the

test estimation process which is guided by various

mechanism names as testing methodologies. Basically the

division is of black box and white box. Among both the

paper had worked towards improving the black box testing

by suggesting some modification of unsolved problems.

After studying the various articles and the base paper [20]
related to adaptive partition testing and model based

testing some of the identified problems are:

(i) Adaptive partition testing deals with dividing the input

into multiple partitions which was not equal size. With

this random behavior the test count complexity

increases. Thus adaptive logic along with model based

early analysis the test generation logic can be improved

to get better results. It is based on feeding back the

derived results for further correcting the next input.

(ii) The partition logic selection criteria is not measured at
the time of testing thus modeling partition logic must

covers the coverage rate and error detection probability

which was not there with existing logics.

(iii) Generated test always starts with initial condition,

it should be continuously changing with the coverage

results of test cases and hence the improved feedback

of test generation is required with adaptive nature.

(iv) Model based software testing generates test cases

based on models of the specifications. Models preserve

the essential information from requirement

specification and are base for the final implementation.

Deficiency detection using test cases got from
imprecise and ambiguous models could be extremely

troublesome.

In summary, the research directions must aims:

1. To understand the automatic Test Case Generation

Process

2. To develop early test case generation strategy using

adaptive partition testing and model based testing.

3. To reduce the Test Suite size, complexity & cost

Developing a model at the privilege level of abstraction
for effective testing is one of the main difficulties for

model-based testing. Early generation of test case must be

conceivable, however this model based testing yet

extracting the data obliged an intermediate graph

development will increase the trouble of cost and efforts.

Thus by taking the above problems as a base, this works

aims towards generating a improved solution than any of

the combination or individual effort of adaptive partition

testing and model based testing.

6.0 PROPOSED SOLUTION

This work proposes a novel partitioned adaptive testing in

combination with the design consideration of models and

using partitioning logic. Here the technique generates the

test data which is thoroughly distributed in overall region

of the divided partition. Thus, the suggested method can

turn formal detection to complete analysis and the

probability of fault detection is also increased.

Traditionally the adaptive random testing is of only two

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 120

forms; distance based and partitioning based. The

suggested hybrid approach is combination of both the

measures for effective determination of faults with

minimum number of test cases. The main problem with

testing is about managing the expansive number of
automated test suite creation with smaller size & less

complexity.

Consequently, we are focusing on automatic and effective

test case handling concept taking in mind the early

generation of test cases. We have parted our work in two

identified domains: First is adaptive partitioning testing for

optimization and second is design based test data

generation (Early Generation). For this accomplishment of

task we had proposed step by step solution. For improving

the efficiency of first part of we uses ART testing along

with candidate selection logics which was later on
readjusted with the feedback logic. It gives the better

result each time while comparing it with random test case

generation. In later stages of this work some more

algorithmic designing is required for extracting the data,

random generations and for analyzing the results on

various constraints like time, size and complexity. For

Design based test data generation we are using UML

diagram for extracting the data in a system model include

sufficient information for automatically generating a suite

of test cases. It alludes to the process and techniques for

the automatic derivation of abstract test cases from a

formal model, the generation of concrete tests from
abstract tests, and the manual or automated execution of

the resulting concrete test cases from proposed framework.

Usually an infinite number of possible tests could be

generated from a model. The test analyst chooses test

generation criteria to select the highest priority tests or to

ensure good coverage of the system behavior. One

common kind of test generation criteria is based on

structural model coverage, using well known test design

strategy of path based testing. This is an automated

process that generates the required number of high-level

(abstract) test cases from the test model using web

computation. It could be of control and data flow and

applies with a detailed analysis for generating the codes
functional blocks where separate input can be passed.

Architectural Process
In the partitioning process, all the individual functional

blocks with zero dependencies is passed in this module

identifies the categories of the input data. These categories

are measures by the behaviour analysis of the data and

their respective functional blocks. After the category

division partitioning of input space is applied. In this the

inputs are divided to various sub domains. Later on the

basis of this several regions are formed. The work also
uses random generator for testing the different regions

with higher probability of detecting the faults on time. But

it also serves the higher computational cost. Thus the

partition of regions is made in such a way that each

partition size reduces with fifty percent with next creation.

Means if the first region is of 50 percent then the next

should be of 25 and later will be of 12.5. Thus by this

logic a test frame is constructed and passed for next

module. Now after partitioning the decision logic is

applied to evaluate the generated partitions and

combinatorial blocks on the basis of coverage and test

count analysis. Now this module compares the randomly
generated partitions and their test frames. Here the

comparison condition checks whether the coverage

achieved is maximum with closes distance of relativity for

test inputs. If the condition is met then the test is taken to

be successful. And if the test frames are not up to the mark

then the readjustment of logics are made. After this,

proceeds with the next candidate selection for test.

Figure 1: Comprehensive Adaptive Partition Testing Using Design Models

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 121

Once the decision was measured then the adaptive nature

is required if the test cases was not suited on the given

logics. Thus adaptive logic shows the adjustment

probability of the partitions and inputs when the desired

output is not met. By this always some guiding results are
feed back to the inputs regions so next time the regions

and their combinations of input passing for testing can be

changed. In this ways some guidance regarding to this

testing is always available with adaptive nature. Later on

the generated test cases are tested thoroughly on various

scripts for detecting the bugs. Here the works aims

towards maximum bugs removal with near optimal efforts

and costs. Here the testers, main job is to identify the

categories by rationing the correct separation conditions.

Once the regions are divided variable test frames are

generated using random sequence generation functions.
And later on the criteria are verified for coverage and

distance measure conditions.

The analysis tools used is ComCoverage which is an open

source tools used evaluate various combinatorial result on

several parameters. The separate code is provided for the

entire design architecture and clearly identifies its

compatibility. In this chapter the structure of

implementation is described along with the various files

which are involved in the implementation of the project.

7.0 ANALYTICAL BENEFITS

The work is a hybrid combination and hence overcomes

the remaining issues of all the blended techniques.

(i) Reduced number of test cases and suites for cost

effective testing

(ii) The proposed testing divides the test cases according to

the specific level and severity of the functional blocks.

The section which is more critical would be tested

more. Level wise bugs removal is provided with test

prioritization means level 0 is most severe and level 3

is least severe
(iii) Hybrid nature provides best testing with reduced

computation load and the coverage achieved by this

testing would be expected as higher than any other.

(iv) Modeling for test generation is a powerful means

for the detection of “holes” in the specification

(undefined or ambiguous behavior).

(v) Independence from the test execution using cloud

infrastructure.

(vi) Automated generation of test cases;

(vii) Systematic coverage of functional behavior;

(viii) Definition of action words (UML model operations)

used in different scripts;
(ix) Efficient Test script generation;

8.0 EVALUATION FACTORS

The suggested system will be implemented on the .NET

framework which provides various features for serving the

complete feature in the form a tool view. Here the tool will

be able to analyze the generation process on the basis of

some of the well known factors such as number of

generated test, complete coverage achieved by the

generated test, generation time, the system resources such

as CPU and RAM utilized etc. The robust experimental

analysis shows the tool behavior setting a milestone in the
field of test case generation and coverage analyses. The

partition and random test will give the effective results

after a complete evaluation and demonstration of the

developed tool. Result obtained is in the form of

Comparison Table’s, Graphs, Utilities Functions, Features,

Parameter Covered tables.

Another factor is branch and flow statement coverage rate.

It is used to identify the code coverage achieved by

generated test cases. If the coverage is maximum and the

number test cases are minimum then it represents effective
testing. Now to calculate the coverage of functional bock I

is following:

Number of executable statements executed=ni

Total number of executable statements = ti

Coverage Ci = (ni / ti) X 100

Which means ni = (ti X Ci)/ 100

Now the total statement is calculated using following

formula:

C=([∑ (ti X Ci)/100] / ∑ ti) X 100 = ∑ (ti X Ci)/ ∑ ti

At the analytical level of evaluation, approach seems to be

effective and well performed than existing mechanism.

The approach also reduces the computation load with

better monitoring and resource consumption analysis.

9.0 CONCLUSION

Programming based software testing with versatile
conduct will dependably permits some open procedure for

testing and its re-execution. The successful experiments

can be resolved if the test originates from complete locales

and spreads at any rate once every sort of information. Be

that as it may, the majority of certain such substantial

quantities of inputs are not tried with some base

endeavors. Thus, another component is required which

decreases the test estimate however builds the code scope.

It works towards guaranteeing the unwavering quality of

the framework. This paper proposed a joining of versatile

parcel testing with outline model based rationales towards

compelling and early ID of bugs concurring even with
their need levels moreover. Implies the module which is

most basic ought to be tried more. It beats the current

issues of high testing expense and calculation multifaceted

nature. On the preparatory assessments the works appears

to give successful arrangement of testing spaces.

REFERENCES

[1] Jon Edvardsson, “A Survey on Automatic Test Data Generation”, in

Proceedings of the Second Conference on Computer Science and

Engineering in Linkoping, pages 21{28.ECSEL, October 1999.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5724 122

[2] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira &

Guilherme H. Travassos, “A Survey on Model-based Testing

Approaches: A Systematic Review”, in WEASELTech’07,

November 5, 2007, Atlanta Georgia, USA, ACM, ISBN 978-1-

59593-880-0/07, June 2007.

[3] Renee C. Bryce, Ajitha Rajan & Mats P.E. Heimdahl, “Interaction

Testing in Model-Based Development: Effect on Model-Coverage”,

in 13th Asia Pacific Software Engineering Conference (APSEC'06),

ISBM-0-7695-2685-3/06, Aug 2007.

[4] Usman Farooq, Chiou Peng Lam & Huaizhong Li, ”Towards

Automated Test Sequence Generation”, in Proceedings of 19th

Australian Conference on Software Engineering ASWEC 2008 (pp.

441-450). Australia: Dec 2008.

[5] Robert M. Herons, “Oracles for Distributed Testing”, in School of

Information Systems, Computing, and Mathematics, Brunel

University, Uxbridge, Middlesex, UB8 3PH, UK, 2010.

[6] Suresh Thummalapenta, Saurabh Sinha, Debdoot Mukherjee &

Satish Chandra, “Automating Test Automation”, in Publication of

IBM T.J. Watson Research Center, Sep 2011.

[7] Sinaga, A., Zhou, Z., Susilo, W., Zhao, L. & Cai, K. 2009,

''Improving software testing cost-effectiveness through dynamic

partitioning'', in B. Choi (eds), Proceedings of the 9th International

Conference on Quality Software, IEEE, Los Alamitos, USA, pp.

249-258.

[8] Andrea Arcuri, Muhammad Zohaib Iqbal and Lionel Briand,

“Random Testing: Theoretical Results and Practical Implications”,

in International Symposium on Software Testing and Analysis

(ISSTA), ACM, 2010.

[9] T.Y. Chen, G. Eddy, R. Merkel and P.K. Wong, “Adaptive Random

Testing Through Dynamic Partitioning”, in Proceedings of the

Fourth International Conference on Quality Software (QSIC’04),

IEEE, doi:0-7695-2207-6/04, 2010

[10] Kulvinder Singh, Rakesh Kumar and Iqbal Kaur, “ Effective Test

Case Generation Using Anti Random Software Testing”, in

International Journal of Engineering Science and Technology Vol.

2(11), 2010, 6016-6021

[11] Marcel Böhme, “Software Regression as Change of Input

Partitioning”, in ICSE Doctoral Symposium , IEEE, Zurich,

Switzerland , doi:978-1-4673-1067-3/12, 2012

[12] Chengying Mao, “Adaptive Random Testing Based on Two-Point

Partitioning”, in International Journal of Informatica, Volume 36,

2012

[13] Rakesh Kumar, Surjeet Singh, Girdhar Gopal, “Automatic Test Suit

generation with Genetic Algorithm”, in IJETCAS, ISSN (Online):

2279-0055, 2013

[14] Renee C Bryce, Sreedevi Sampath & Atif M Memon, “Developing

a Single Model and Test Prioritization Strategies for Event-Driven

Software”, in IEEE Transactions on Software Engineering, Vol. 37,

No. 1, Jan 2011.

[15] Soma Sekhara Babu Lam, M L Hari Prasad Raju, Uday Kiran M &

Swaraj Ch, “Automated Generation of Independent Paths and Test

Suite Optimization Using Artificial Bee Colony”, in International

Conference on Communication Technology and System Design,

Published by Elsevier Ltd, ISSN 1877-7058, 2012.

[16] Premal B. Nirpal & K. V. Kale, “Comparison of Software Test Data

for Automatic Path Coverage Using Genetic Algorithm”, in

International Journal of Computer Science & Engineering

Technology (IJCSET), ISSN : 2229-3345, Vol. 1 No. 1, Sep 2012.

[17] A.V.K. Shanthi & G. MohanKumar, “A Novel Approach for

Automated Test Path Generation using TABU Search Algorithm”,

in International Journal of Computer Applications, ISSN 0975 –

888,Volume 48– No.13, June 2012.

[18] Rupinder Singh & Vinay Arora, “Literature Analysis on Model

based Slicing”, in International Journal of Computer Applications,

ISSN 0975 – 8887, Volume 70– No.16, May 2013.

[19] Saswat Anand, Edmund Burke et. al., “An Orchestrated Survey on

Automated Software Test Case Generation”, in Journal of Systems

and Software, Feb 2013.

[20] Junpeng Lv, Hai Hu, Kai-Yuan Cai, and Tsong Yueh Chen,

“Adaptive and Random Partition Software Testing”, in IEEE

Transaction of Systems, Man and Cybernetics: Systems, ISSN

2168-2216, doi: 10.1109/TSMC.2014.2318019, 2014.

